
Automatic Discovery of Static Structures in
Probabilistic Programs

Daniel Lundén∗, David Broman∗, Fredrik Ronquist†, Lawrence M. Murray‡
∗KTH Royal Institute of Technology, Sweden

†Swedish Museum of Natural History, Sweden
‡Uppsala University, Sweden

1 Introduction
Probabilistic programming is an approach to probabilistic
modeling where one motivation is greater expressive power
than traditional graphical models. This increase in expressive
power comes from two properties of probabilistic program-
ming: stochastic branching and recursion. There has been a
considerable amount of work on inference algorithms for
graphical models, but most of this work is not directly trans-
ferable to probabilistic programs. By now, there are never-
theless quite a few approaches to performing inference in
probabilistic programs [1, 2], many being extensions of their
graphical model inference counterparts.

Naturally, many of these algorithms do not perform well
on all probabilistic programs. One example is the family of
inference algorithms known as sequential Monte Carlo (SMC)
methods. In general, SMC operates by performing parallel
forward sampling on a model, where each sample is known
as a particle. In graphical models, this system of particles
is resampled according to particle likelihoods whenever an
observed variable is encountered during forward sampling.
This means that less likely samples under the observation
are thrown out and replaced by more likely samples. In prob-
abilistic programming languages such as Anglican [2] and
WebPPL [1], the approach for SMC is to adapt the same
algorithm as for graphical models—resample whenever an
observed1 random variable is encountered. The problemwith
SMC in probabilistic programs is that not all particles might
align at the same resampling point simultaneously. This can
be problematic, as is shown in Figure 1. Here, approximately
half of all particles will align at the term weight(-1000)
(line 2), and half at weight(-1) (line 5) . Since weight(-1)
has a much higher weight, all the weight(-1000) particles
will be thrown out. As we can see however, both branches
are, in the end, equally weighted because of the weight(999)
term (line 3) in the first branch. We should therefore have an
approximately equal amount of samples from both branches.
This shows that the resampling step in the algorithm can be

1The programming language constructs available for this differs between
languages. In Anglican, an observe construct is used. WebPPL uses a
factor construct. In our language (Figures 1 and 2) we use a weight con-
struct, similar to factor. This construct simply adds a weight to the sample.

This project is financially supported by the Swedish Foundation for Strategic
Research (ASSEMBLE RIT15-0012).

1 if flip() then {

2 weight (-1000)

3 weight (999)

4 } else

5 weight (-1)

Figure 1. A toy example illustrating when resampling can
be problematic. Written in our own functional, higher-order,
probabilistic programming language (under development).
The function flip represents a coin flip.

detrimental to performance, and perhaps also incorrect (this
requires further investigation).
To solve this problem, we propose a new approach for

SMC inference in probabilistic programming. Our contribu-
tions are: (1) A static analysis algorithm for discovering static
structures in probabilistic programs. An illustrative example
of this is given in Section 2, and an outline of the formaliza-
tion of the analysis is given in Section 3. (2) An application of
the algorithm to automatically select correct resampling loca-
tions for SMC inference in probabilistic programming. This
is illustrated in Section 2, and briefly mentioned in Section 3
relating it to the formalization.

It is also possible that the static structures can be used by
other types of inference algorithms. This is left for future
work.

2 Discovery of static structures: an
illustrative example

Consider the probabilistic program2 in Figure 2. The sim
function (lines 1–7) has both a stochastic branch (lines 3–
6) and recursion (line 5). Because of this, the sim function
can produce a random number of random variables, each
of which is given by t (line 2). This corresponds not to a
single, but many different possible graphical models. Hence,
this part of the model cannot be expressed with a graphi-
cal model. The static structure given by statically analyzing
the program is shown in Figure 2. We can always perform
such an analysis on any probabilistic program—a trivial solu-
tion to any program is a static structure with a single node,
encapsulating the entire program.

2This small example model is a highly simplified version of a phylogenetic
birth-death model.

PROBPROG’18, October 2018, Boston, MA, USA D. Lundén et al.

12:sim

11:stop10:lambda

13:weight

1 function sim(stop , lambda) {

2 t ~ exponential(lambda)

3 if t <= stop then {

4 weight (2.0)

5 sim(stop -t, lambda +0.1)

6 } else t

7 }

8
9 function model() {

10 lambda ~ gamma (1.0, 1.0)

11 stop ~ gamma (10.0, 3.0)

12 sim = sim(stop , lambda)

13 weight(sim+lambda)

14 lambda

15 }

Figure 2. Example of static structure discovery. The program
on the left is written in the same language as in Figure 1. On
the right is the discovered static structure (note the similar-
ities to a graphical model). The shaded node is a common
notation for observed random variables. The striped node
represents the part of the program that cannot be decom-
posed further due to stochastic branching and recursion.

tF x | c | λx.t | t t | if t then t else t | sample

x ∈ X (Variable names)
c is a constant

Figure 3. The minimal target language for our algorithm.

Given the discovered static structure in Figure 2, it is possi-
ble to apply SMC to the program by only resampling at calls
to weight outside of any striped nodes. Doing this ensures
that, when resampling, all particles are aligned at the same
weight. In Figure 2, this means that resampling will only be
performed once, at line 13. The other calls to weight (line
4) are located within the sim node, and here no resampling
occurs. Instead, the weight of the sample simply accumu-
lates. This method for selecting resampling locations can be
generalized to all higher-order probabilistic programs.

3 Formalization
We will now briefly outline the algorithm for discovering
the static structures in probabilistic programs. The approach
consists of flagging the dynamic parts of programs. A dy-
namic part of a program is a part that can be reached from
within a stochastic branch. Intuitively, in the program in Fig-
ure 2, the entire sim function (lines 1–7) should be flagged.
This is because of the recursive call to sim (line 5) inside the
stochastic branch (lines 3–6). For the formalization, we use
a small subset of our language based on the untyped lambda
calculus with all necessary properties, shown in Figure 3.
Note in particular the sample term, which, when supplied
as the condition of an if term, makes a random choice in
which branch to take. This is the minimal construct needed
to introduce stochastic branching.

Given a program t, the algorithm proceeds as follows:
(1) Conservatively annotate each term in the program with
its stochasticness. A term is stochastic if it can vary due to
randomness (caused by the sample construct). This step
transforms all terms t in our program to terms ⟨t⟩s , where
s ∈ {true, false}. (2) By using these stochasticness annota-
tions to identify stochastic branches, transform all terms ⟨t⟩s
to terms ⟨t⟩d , indicating whether they are static or dynamic
(d ∈ {true, false}). We have formalized the above algorithm
as syntax-directed inference rules with one caveat—they
require explicit annotations on lambda parameters, one of
which is the parameter’s stochasticness. Such annotations
should in the end be inferred automatically, and is left for
future work. The inference rules are omitted due to space
constraints.

To illustrate the challenges in the formalization, consider
the following program

(λx.if sample then (x c) else c) (λx.x) (1)
which the final algorithm should transform to

(λx.if sample then (x c) else c) (λx.x) (2)

where the underlining shows which parts of the program
have been flagged as dynamic. The function (λx.x) is flagged
as dynamic since it is called from within a stochastic branch
in the LHS of the application. Hence, the flagging of the RHS
of an application depends on the LHS. It can also go in the
other direction, as can be seen in the following example:

(λx.(λy.x y) (λx.x))

(λx.if sample then (x c) else c)
(3)

which should transform to
(λx.(λy.x y) (λx.x))

(λx.if sample then (x c) else c)
(4)

To relate the above to SMC as described in the previous
section, we simply note that resampling should only occur
for weights with d = false (a weight term can easily be
added to the language in Figure 3).

4 Conclusion and future work
We have presented a new approach to SMC in probabilistic
programming. Future work includes adding inference of the
now explicit annotations in the formalization, reasoning
about the approach’s correctness, evaluating the algorithm
for SMC on a full-scale model, and making the approach less
conservative.

References
[1] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and

Implementation of Probabilistic Programming Languages. http://dippl.
org. Accessed: 2018-7-17.

[2] FrankWood, JanWillem van deMeent, and VikashMansinghka. 2014. A
New Approach to Probabilistic Programming Inference. In Proceedings
of the 17th International conference on Artificial Intelligence and Statistics.

http://dippl.org
http://dippl.org

	1 Introduction
	2 Discovery of static structures: an illustrative example
	3 Formalization
	4 Conclusion and future work
	References

