
Automatic Discovery of Static Structures
in Probabilistic Programs

Revised title: Automatic Alignment of Sequential Monte Carlo Inference in
Higher-Order Probabilistic Programs

Daniel Lundén1 David Broman1 Fredrik Ronquist2 Lawrence M. Murray3
1KTH Royal Institute of Technology, Stockholm, Sweden

2Swedish Museum of Natural History, Stockholm, Sweden 3Uppsala University, Uppsala, Sweden

Financially supported
by the Swedish Foundation
for Strategic Research.

Our view of probabilistic programming languages

I Programming languages with
I constructs for sampling from probability distributions, and
I constructs for conditioning on data.

I Additionally, if a language includes
I stochastic branching, and
I recursion,
we call it a universal probabilistic programming language.

I Commonly used family of inference algorithms:
Sequential Monte Carlo (SMC) methods

The problem with SMC for probabilistic programming

I A toy model over booleans. Simply executing the program has equal
probability of returning true and false, always with the weight -1.

1 if flip () then {
2 weight (-1000)
3 weight (999)
4 false
5 } else {
6 weight (-1)
7 true
8 }

false true
0

0.25

0.5

Pr
ob

ab
ilit

y

I WebPPL result running SMC:

false true
0

0.5

1

Pr
ob

ab
ilit

y

I Anglican error at runtime running SMC:

some observe directives are not global

Solution: Automatic alignment of weight calls

I We do a static analysis on a program, identifying aligned calls to
weight. The red node indicates we cannot align anything within sim
due to stochastic branching and recursion.

12:sim

11:stop10:lambda

13:weight

1 function sim(stop , lambda) {
2 t ~ exponential (lambda)
3 if t <= stop then {
4 weight (2.0)
5 sim(stop -t, lambda +0.1)
6 } else t
7 }
8
9 function model () {

10 lambda ~ gamma (1.0 , 1.0)
11 stop ~ gamma (10.0 , 3.0)
12 sim = sim(stop , lambda)
13 weight(sim+lambda)
14 lambda
15 }

The key: Discovering static structures

I A minimal target language for the static analysis:
t ::= x | c | λx .t | t1 t2 | fix t | if t1 then t2 else t3
| sample t | weight t

I Example 1:
(λx .if sample dist then (x c1) else c2) (λy .y)

I Example 2:
(λa.(λb.a b) (λc.c)) (λd .if sample dist then (d c1) else c2)

Approach: 0-CFA

1. Label the program:
((λx .(if (sample dist1)2 then (x 3 c4

1)5 else c6
2)7)8 (λy .y 9)10)11

2. Generate constraints for the program:
{ {stoch} ⊆ S2, {(λy .·9)10} ⊆ S10, {(λx .·7)8} ⊆ S8,

Sy ⊆ S9, S5 ⊆ S7, S6 ⊆ S7, Sx ⊆ S3,

{(λx .·7)8} ⊆ S8⇒ S10 ⊆ Sx , {(λx .·7)8} ⊆ S8⇒ S7 ⊆ S11,

{(λy .·9)10} ⊆ S8⇒ S10 ⊆ Sx , {(λy .·9)10} ⊆ S8⇒ S9 ⊆ S11,

{(λx .·7)8} ⊆ S3⇒ S4 ⊆ Sx , {(λx .·7)8} ⊆ S3⇒ S7 ⊆ S5,

{(λy .·9)10} ⊆ S3⇒ S4 ⊆ Sy , {(λy .·9)10} ⊆ S3⇒ S9 ⊆ S5 }

3. Solve the constraints using the standard 0-CFA algorithm:
Sy = ∅ Sx = {(λy .·9)10} S1 = ∅
S2 = {stoch} S3 = {(λy .·9)10} S4 = ∅
S5 = ∅ S6 = ∅ S7 = ∅
S8 = {(λx .·7)8} S9 = ∅ S10 = {(λy .·9)10}
S11 = ∅.

4. Find all dynamic (i.e., not static) terms: {3, 4, 5, 6, 9, 10}
5. Transform all dynamic weight calls to dweight calls

Case study: Estimating a normalizing constant

I We have evaluated aligned SMC on a model from phylogenetics for
estimating a normalizing constant, with significant decrease in runtime
and increase in accuracy compared to unaligned SMC. The dashed line
is the true normalizing constant, and the numbers on the left show the
number of SMC particles.

−67 −66 −65 −64 −63 −62 −61 −60 −59 −58 −57 −56 −55 −54 −53 −52

Aligned
10 000 executions

Aligned
1000 executions

Aligned
100 executions

Unaligned
10 000 executions

Unaligned
1000 executions

Unaligned
100 executions

This project is financially supported by the Swedish Foundation for Strategic Research (ASSEMBLE RIT15-0012).

